데이터 전처리
from sklearn.preprocessing import LabelEncoder
for col in cols :
le = LabelEncoder()
train[col] = le.fit_transform(train[col])
test[col] = le.transform(test[col])
검증 데이터 분리
from sklearn.model_selection import train_test_split
X_tr, X_val,y_tr,y_val = train_test_split(train, target, test_size=0.2, random_state=0)
모델 및 평가
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(random_state=0)
rf.fit(X_tr,y_tr)
pred = rf.predict(X_val)
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(random_state=0)
rf.fit(X_tr,y_tr)
pred = rf.predict(X_val)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
# 정확도
print(accuracy_score(y_val, pred))
# 정밀도
print(precision_score(y_val, pred))
# 재현율 (민감도)
print(recall_score(y_val, pred))
# F1
print(f1_score(y_val , pred))
# roc-auc
pred_proba = rf.predict_proba(X_val)
print(roc_auc_score(y_val, pred[:, 1]))
from sklearn.metrics import root_mean_squared_error, mean_squared_error, mean_absolute_error, r2_score
result = root_mean_squared_error(y_val, y_pred)
print('RMSE:', result)
# 추가 평가지표 학습
result = mean_squared_error(y_val, y_pred)
print('MSE:', result)
result = mean_absolute_error(y_val, y_pred)
print('MAE:', result)
result = r2_score(y_val, y_pred)
print('R2:', result)
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.metrics import root_mean_squared_error, mean_squared_error, mean_absolute_error, r2_score